Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep ; 42(6): 112532, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2323919

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have seriously attacked the antibody barrier established by natural infection and/or vaccination, especially the recently emerged BQ.1.1 and XBB.1. However, crucial mechanisms underlying the virus escape and the broad neutralization remain elusive. Here, we present a panoramic analysis of broadly neutralizing activity and binding epitopes of 75 monoclonal antibodies isolated from prototype inactivated vaccinees. Nearly all neutralizing antibodies (nAbs) partly or totally lose their neutralization against BQ.1.1 and XBB.1. We report a broad nAb, VacBB-551, that effectively neutralizes all tested subvariants including BA.2.75, BQ.1.1, and XBB.1. We determine the cryoelectron microscopy (cryo-EM) structure of VacBB-551 complexed with the BA.2 spike and perform detailed functional verification to reveal the molecular basis of N460K and F486V/S mutations mediating the partial escape of BA.2.75, BQ.1.1, and XBB.1 from the neutralization of VacBB-551. Overall, BQ.1.1 and XBB.1 raised the alarm over SARS-CoV-2 evolution with unprecedented antibody evasion from broad nAbs elicited by prototype vaccination.

2.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2261565

ABSTRACT

SARS-CoV-2 Omicron BA.2.75 subvariant has evolved to a series of progeny variants carrying several additional mutations in the receptor-binding domain (RBD). Here, we investigated whether and how these single mutations based on BA.2.75 affect the neutralization of currently available anti-RBD monoclonal antibodies (mAbs) with well-defined structural information. Approximately 34% of mAbs maintained effective neutralizing activities against BA.2.75, consistent with that against BA.2, BA.4/5, and BA.2.12.1. Single additional R346T, K356T, L452R, or F486S mutations further facilitated BA.2.75-related progeny variants to escape from broadly neutralizing antibodies (bnAbs) at different degree. Only LY-CoV1404 (bebtelovimab) displayed a first-class neutralization potency and breadth against all tested Omicron subvariants. Overall, these data make a clear connection between virus escape and antibody recognizing antigenic epitopes, which facilitate to develop next-generation universal bnAbs against emerging SARS-CoV-2 variants. Graphical

3.
iScience ; 26(4): 106283, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2261566

ABSTRACT

SARS-CoV-2 Omicron BA.2.75 subvariant has evolved to a series of progeny variants carrying several additional mutations in the receptor-binding domain (RBD). Here, we investigated whether and how these single mutations based on BA.2.75 affect the neutralization of currently available anti-RBD monoclonal antibodies (mAbs) with well-defined structural information. Approximately 34% of mAbs maintained effective neutralizing activities against BA.2.75, consistent with those against BA.2, BA.4/5, and BA.2.12.1. Single additional R346T, K356T, L452R, or F486S mutations further facilitated BA.2.75-related progeny variants to escape from broadly neutralizing antibodies (bnAbs) at different degree. Only LY-CoV1404 (bebtelovimab) displayed a first-class neutralization potency and breadth against all tested Omicron subvariants. Overall, these data make a clear connection between virus escape and antibody recognizing antigenic epitopes, which facilitate to develop next-generation universal bnAbs against emerging SARS-CoV-2 variants.

4.
Cell Rep ; 40(11): 111335, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1996065

ABSTRACT

Although thousands of anti-SARS-CoV-2 monoclonal neutralizing antibodies (nAbs) have been identified and well characterized, some crucial events in the development of these nAbs during viral infection remain unclear. Using deep sequencing, we explore the dynamics of antibody repertoire in a SARS-CoV-2-infected donor, from whom the potent and broad nAb P2C-1F11 (the parent version of Brii-196) was previously isolated. Further analysis shows a rapid clonal expansion of some SARS-CoV-2-specific antibodies in early infection. Longitudinal tracing of P2C-1F11 lineage antibodies reveals that these elite nAbs were rare. Using sequence alignment, structure modeling, and bioactivity analysis based on site-mutated assay, we demonstrate that a key substitution F27I in heavy chain contributes significantly to the maturation of P2C-1F11-like antibodies. Overall, our findings elucidate the developmental process and maturation pathway of P2C-1F11, providing some important information for the design of novel immunogens to elicit more potent nAbs against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans
5.
Virol J ; 19(1): 96, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1869089

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal , COVID-19/diagnosis , Humans , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics
6.
J Clin Virol ; 150-151: 105162, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851456

ABSTRACT

A recently identified SARS-CoV-2 variant, Lambda, has spread to many countries around the world. Here, we measured and evaluated the reduced sensitivity of Lambda variant to the neutralization by plasma polyclonal antibodies elicited by the natural SARS-CoV-2 infection and inactivated vaccine. The combination of two substitutions appearing in the RBD of spike protein (L452Q and F490S) resulted in noticeably reduced neutralization against Lambda variant. F490S contributed more than L452Q in affecting the neutralization. In addition, the neutralization test with 12 published nAbs binding to RBD of SARS-CoV-2 with defined structures suggested that Lambda variant resisted the neutralization by some antibodies from Class 2 and Class 3. Overall, these results suggest that pre-existing antibody neutralization established by natural infection from non-Lambda variants or immunization could be significantly decreased, re-emphasizing the importance of ongoing viral mutation monitoring.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL